Woodall primes

Started: July 18, 2007
Last update: Dec 04, 2007

A Woodall prime is any prime of the form n*2^n-1. It is conjectured that there are infinitely many Woodall primes.

See reserved and checked ranges here.
See the Top 5000 Top 20 Woodall Primes here.

There are 32 Woodall primes discovered so far :

no. n #digits normalized form who found date
1 2 1 2^3-1 n.n. n.n.
2 3 2 3*2^3-1 n.n. n.n.
3 6 3 3*2^7-1 n.n. n.n.
4 30 11 15*2^31-1 n.n. n.n.
5 75 25 75*2^75-1 n.n. n.n.
6 81 27 81*2^81-1 n.n. n.n.
7 115 37 115*2^115-1 n.n. n.n.
8 123 40 123*2^123-1 n.n. n.n.
9 249 78 249*2^249-1 n.n. n.n.
10 362 112 181*2^363-1 n.n. n.n.
11 384 119 3*2^391-1 n.n. n.n.
12 462 142 231*2^463-1 n.n. n.n.
13 512 157 2^521-1 n.n. n.n.
14 751 229 751*2^751-1 n.n. n.n.
15 822 251 411*2^823-1 n.n. n.n.
16 5312 1603 83*2^5318-1 Keller Dec 1984
17 7755 2339 7755*2^7755-1 Keller Dec 1984
18 9531 2874 9531*2^9531-1 Keller Dec 1984
19 12379 3731 12379*2^12379-1 Keller Dec 1984
20 15822 4768 7911*2^15823-1 Keller Dec 1987
21 18885 5690 18885*2^18885-1 Keller Dec 1987
22 22971 6920 22971*2^22971-1 Young Mai 1997
23 23005 6930 23005*2^23005-1 Young Mai 1997
24 98726 29725 49363*2^98727-1 Young Mai 1997
25 143018 43058 71509*2^143019-1 Ballinger 25.04.1998
26 151023 45468 151023*2^151023-1 O'Hare 01.05.1998
27 667071 200815 667071*2^667071-1 Toplic 25.09.2000
28 1195203 359799 1195203*2^1195203-1 Rodenkirch 11.07.2005
29 1268979 382007 1268979*2^1268979-1 Siemelink 25.01.2007
30 1467763 441847 1467763*2^1467763-1 Siemelink, Mate, Rodenkirch 07.06.2007
31 2013992 606279 251749*2^2013995-1 Andersen 09.08.2007
32 2367906 712818 1183953*2^2367907-1 Kohlman 03.09.2007